
PHYSICAL REVIEW E, VOLUME 65, 046217
Spectral properties of quantized barrier billiards
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Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany
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The properties of energy levels in a family of classically pseudointegrable systems, the barrier billiards, are
investigated. An extensive numerical study of nearest-neighbor spacing distributions, next-to-nearest spacing
distributions, number variances, spectral form factors, and the level dynamics is carried out. For a special
member of the billiard family, the form factor is calculated analytically for small arguments in the diagonal
approximation. All results together are consistent with the so-called semi-Poisson statistics.
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I. INTRODUCTION

Two decades after the first investigation of the quant
mechanics of nonintegrable polygonal billiards@1#, a re-
newed interest in this peculiar class of dynamical syste
has shown up recently. One reason is the fabrication
polygonal-shaped optical microcavities@2–5#. Another rea-
son is the finding@6,7# that certain planar rational polygon
~all angles between sides are of the formpp/q, wherep, q
are relatively prime integers! have spectral properties ver
similar to those of mesoscopic disordered systems at
critical point of the metal-insulator transition@8# and to those
of systems with interacting electrons@9#.

The classical dynamics in rational polygons having
least one critical corner withp.1 is characterized a
pseudointegrable@1#. The phase space is foliated by tw
dimensional invariant surfaces@10,11#, like in integrable sys-
tems@12#, but the genus of the surfaces is larger than one@1#.
The flow on these surfaces is typically ergodic and not m
ing @13#.

Pseudointegrable systems cannot be quantized acco
to the semiclassical Einstein-Brillouin-Keller rule@1#. As a
consequence, the statistical properties of energy level
classically pseudointegrable systems are different from th
of integrable systems that are generically well described
Poissonian random processes@14#. For example, the neares
neighbor spacing distribution of pseudointegrable syste
generically displays a clear level repulsion@1# as in the case
of the Gaussian orthogonal ensemble~GOE! of random-
matrix theory@15# that describes fully chaotic systems wi
time-reversal symmetry@16#. Significant deviations from
GOE are observed first theoretically@17# and later experi-
mentally in microwave cavities@18#.

Recently, the semi-Poisson~SP! statistics have been pro
posed as reference point for the spectral statistics of pse
integrable systems@6,7#. Following Refs.@7,19#, we define
SP statistics by removing every other level from an orde
Poisson sequence$xn%. Unfortunately, the term ‘‘semi-
Poisson’’ was originally coined for a sequence$yn% where
yn5(xn1xn11)/2 @6#. We call this here interpolated-Poisso
~IP! statistics. IP and SP statistics have identical near
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neighbor spacing distributions but other spectral quantitie
general differ.

The SP conjecture has been verified numerically for ri
triangular@6,7# and rhombus billiards@20# where only small
differences to SP have been found. However, numer
works on right triangles in a regime of high level numbe
seem to indicate that the statistical properties are nonsta
ary @21,22# with increasing, but still small, deviations from
SP as the energy is increased@22#. For certain right triangles
it has been shown analytically that the spectral form fac
for small arguments is located around the corresponding
result @23#.

However, the triangles studied in Ref.@23# are not generic
rational polygons, because they belong to the class of Ve
polygons@24#, which may have special spectral propertie
In this paper, we study the symmetric barrier billiards@25–
31# where the even-symmetry states, the ‘‘pure barri
billiard states,’’ are expected to show the generic behav
We provide analytical and extensive numerical calculatio
showing that the spectral properties are fully consistent w
SP statistics. Moreover, our results throw some light on
nonstationarity observed in Refs.@21,22#.

The paper is organized as follows. After defining the b
liard family in Sec. II, we compute analytically the form
factor for small arguments in Sec. III. Numerical results a
presented in Sec. IV. Section V contains a conclusion.

II. BARRIER BILLIARDS

The family of barrier billiards consists of rectangles wi
sizes l x , l y and a barrier placed on the symmetry linex
5 l x/2 as shown in Fig. 1~a!. The length of the barrierl
P(0,l y) is the only nontrivial parameter. The free motion of
point particle with massm and momentum (px ,py) bounded
by elastic reflections at the boundary of the billiard has
second constant of motionK5px

2 in addition to Hamilton’s
functionH. Hence, the dynamics in phase space is restric
to invariant surfaces (H,K)5const. The topology of these
surfaces is not that of a torus~with genus 1! but that of a
two-handled sphere~genus 2! due to the critical corner at the
upper end of the barrier; see Ref.@1# for the relation between
critical corners and the genus of invariant surfaces in pseu
integrable billiards.

The billiards are Veech~roughly speaking, this property
implies a special kind of hidden symmetry! if and only if l / l y
©2002 The American Physical Society17-1
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JAN WIERSIG PHYSICAL REVIEW E 65 046217
is a rational number@30#. Still, a typical symmetric barrier
billiard is not a generic pseudointegrable system since
composed of two copies of an integrable sub-billiard,
rectangle shown in Fig. 1~b!. This property is identical to
almost-integrability@32# in the case ofl / l y being rational.

The energy eigenstates are solutions of the Helmh
equation with Dirichlet boundary conditions, i.e., vanishi
amplitude, on the boundary of the polygon. The states
odd or even with respect to the symmetry line. The form
ones are trivial eigenstates of the integrable sub-billiard
Fig. 1~b!. We, therefore, deal mainly with the even ones,
‘‘pure barrier-billiard states,’’ which fulfill mixed boundary
conditions on the boundary of the symmetry-reduced po
gon; see Fig. 1~c!. We expect that the pure barrier-billiar
states show the generic features of energy states in rat
polygons.

III. THE SPECTRAL FORM FACTOR

We here compute analytically a spectral quantity, the tw
point correlation form factor, for the energy levels$En% of a
special member of the barrier-billiard family. Our calculatio
is inspired by that for the triangular billiards in Ref.@23#. It
turns out that the present calculation is much simpler. As
Ref. @23#, we will apply the modern semiclassical theo
based on trace formulas that express the density of states
quantum system in terms of periodic orbits of the underly
classical system@33#. For billiards, the semiclassical limi
\→0 corresponds to the high-energy limitE→`. Through-
out the paper we use natural units such that\52m51.

The density of states can be written as sum of a smo
part and an oscillatory part

d~E!5(
n

d~E2En!5d̄~E!1dosc~E!. ~1!

The fluctuations in the oscillatory part can be studied w
the help of the two-point correlation function

R~e!5 K doscS E1
e

2DdoscS E2
e

2D L . ~2!

FIG. 1. ~a! Trajectory~dotted! in the full barrier billiard, a rec-
tangle with a barrier between the points (x,y)5( l x/2,0) and
( l x/2,l ). Symmetry-reduced system with~b! Dirichlet boundary
conditions and~c! mixed boundary conditions: Dirichlet~Neumann!
on solid ~dashed! lines.
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Brackets^•••& denote an energy averaging aroundE on an
energy window much larger than the mean level spac
1/d̄(E), and much smaller thanE. The Fourier transform of
R(e) is the spectral form factor

K~t!5E
2`

` de

d̄
R~e!e2p i d̄et. ~3!

We will concentrate on the limitt→0; K(0)51 for Poisson
@34#, 1/2 for SP@23#, and 0 for GOE@34,15#.

For two-dimensional rational polygons, the smooth part
the density of states is semiclassically described by We
law d̄5A/(4p) whereA is the area of the polygon; the os
cillating part splits into two parts@35,36#

dosc~E!5dpo~E!1ddo~E!. ~4!

The periodic-orbit contribution

dpo~E!5(
po

Ap

4p

1

A2pklp

exp~ ikl p2 inpp/22 ip/4)1c.c.

~5!

is a summation over classical~primitive and nonprimitive!
periodic orbits. These orbits are marginally stable and app
always in one-parameter families reflecting the foliation
phase space by two-dimensional invariant surfaces.p labels
these families;Ap denotes the surface in configuration spa
covered by a given family~without repetitions of primitive
periodic orbits!; l p is the ~nonprimitive! length of periodic
orbits; the Maslov indexnp is here twice the number o
reflections at Dirichlet boundaries~Neumann boundaries d
not contribute!; k5AE is the wave number.

The diffractive orbit contributionddo(E) is a summation
over orbits starting and ending at critical corners of the po
gon. This summation is more involved than the period
orbit contribution@37#. In the limit t→0, however, the form
factor K(t) does not depend on diffractive orbits@23#. With
this insight a formula forK(0) has been derived in Ref.@23#
by inserting the periodic-orbit contribution~5! into Eq. ~3!
and employing the diagonal approximation~which is ex-
pected to be valid for smallt) yielding

K~0!5 lim
t→0

1

8p2d̄
(
po

uApu2

l p
gp

2d~ l p24pkd̄t!, ~6!

wheregp is the multiplicity of a given periodic-orbit family,
i.e., the number of families with exactly the same lengt
and the summation is performed over families with differe
lengths.

For later considerations it is helpful to repeat the eval
tion of Eq. ~6! for the simplest case, the rectangular billiar
as done in Ref.@23#. A family of periodic orbits in a rect-
angle with sizesa, b ~a and b are irrationally related! and
areaA5ab can be specified by two non-negative intege
mp and np , denoting the number of traversals across
billiard in the x and y direction, respectively. The length o
each orbit is
7-2



-

s

ie
ur
e

te
-
-
in
io
a
n

ne

es

te
-

n

tri

ith

he
f

at

e-

s for

e
at

s

bly
ute
n

tical
re-

-

cal
ex-
re-
e

nd
is

ing
e-

e-
y
tra

tes

sec-
re-

er
t

SPECTRAL PROPERTIES OF QUANTIZED BARRIER . . . PHYSICAL REVIEW E 65 046217
l p5A~2mpa!21~2npb!2. ~7!

The number of periodic orbitsN( l ) up to length l is the
number of lattice points in the positive (mp ,np) quadrant
inside the ellipse~7! asymptotically given by

N~ l !5
p l 2

16A
. ~8!

Due to the fact that all families cover the same areaAp
52A and have typically the same multiplicitygp52 ~time-
reversal symmetry! the sum~6! can be replaced by the fol
lowing simple integral:

K~0!5 lim
t→0

2A2

p2d̄
E

0

`1

l
d~ l 24pkd̄t!

dN~ l !

dl
dl, ~9!

which givesK(0)51 as expected for generic integrable sy
tems@34#.

We now extend the previous calculation to the barr
billiard. To keep the calculation elementary, we restrict o
self to the special Veech casel 5 l y/2. The odd states ar
eigenstates in the rectangle with widtha5 l x/2, height b
5 l y , and with Dirichlet boundary conditions, see Fig. 1~b!,
so we getK(0)51 as demonstrated above. The even sta
the ‘‘pure barrier-billiard states,’’ fulfill mixed boundary con
ditions as shown in Fig. 1~c!. In the semiclassical trace for
mula ~5!, the inhomogeneous boundary conditions only
fluence the Maslov indices of the periodic orbits: a reflect
at a Dirichlet boundary increases the index by two in contr
to a reflection at a Neumann boundary that does not cha
the index. The resulting phase difference ofp between tra-
jectories has an analog in billiards with a magnetic flux li
@23# where trajectories encircling a flux of 1/2~in natural
units! once pickup a phasep.

First, let us consider periodic orbits with fixedmp ,np
>0 and mp odd. We writemp5mN1mD where mN ,mD
>0 count the number of reflections atx5 l x/2 with Neumann
or Dirichlet boundary condition, respectively. Two cas
have to be distinguished:mN even andmD odd;mN odd and
mD even. The corresponding two types of orbits are rela
by a symmetry transformation~ignoring the boundary condi
tions!, the reflection at the liney5 l y/2. Hence, both types
have the samel p , gp , andAp . However, the Maslov indices
are different due to the inhomogeneous boundary conditio
np mod 450 and np mod 452, respectively. This implies
that the contribution of both families to the trace formula~5!
are identical differing just by a sign. Therefore, both con
butions cancel each other.

Second, let us turn to periodic orbits withmp even. We
begin with unfolding the orbits into a larger rectangle w
width a852a. Assume, for simplicity, thatmp85mp/2 is odd.
The casemp8 even can be treated by further unfolding of t
orbits. Again, formp85mN8 1mD8 odd there exist two kinds o
periodic orbits related by symmetry: one withmN8 even and
mD8 odd and one withmN8 odd andmD8 even. These two kinds
of trajectories either become congruent or remain separ
when folded back into the original rectangle with widtha. In
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the first case, we have to add the two different values ofmN8
and the two values ofmD8 leading to mN and mD odd
throughout the family. In the other case, we getmN52mN8
and mD52mD8 even since each orbit is symmetric with r
spect to the folding axis. Clearly, for fixednp only one of
these two cases is possible. Hence, no cancellation occur
evenmp in the trace formula~5!, in contrast to the complete
cancellation in the case ofmp odd. The simple consequenc
of which is that the number of periodic-orbit families th
contributes to the trace formula~5! is reduced by a factor
two. The same is true for the sum~6!. From Eq.~9! follows
then directly our main analytical result

K~0!5
1

2
. ~10!

Our calculatedK(0) is not only close to the SP prediction a
in the case of Veech triangles@23#, it agrees exactly with the
SP prediction.

The calculation for general barrier length is considera
more complicated. Yet, it should be possible to comp
K(0) also for rationall / l yÞ1/2 using methods developed i
Refs.@23,30#.

IV. NUMERICAL RESULTS

We here present numerical results on several statis
quantities for general symmetric barrier billiards. As rep
sentatives we choose the Veech billiard withl 5 l y/2 and one
that is not Veech withl 5 l yv, wherev5(A521)/2 is ~the
reciprocal of! the golden mean. Irrationally related param
etersl x5pA8p/3 andl y53A8p/p are taken. Billiards with
l'0 and l' l y are not investigated since the semiclassi
behavior of these limiting cases is expected to set in at
tremely high energies. We consider two different energy
gimes: ~i! the medium-energy regime starting with th
40 000th level and ending with the 60 000th level, and~ii !
the high-energy regime starting with the 400 000th level a
ending with the 420 000th level. Our high-energy regime
below that of Ref.@22# and above that of Ref.@21#.

We compute the eigenvalues with the mode-match
technique that is very efficient for barrier billiards as d
scribed in detail in Ref.@28#. An accuracy of about 1024 of
the mean level spacing is achieved.

To distinguish between local fluctuations in the level s
quenceE1<E2<E3< . . . and a systematic global energ
dependence of the average density we ‘‘unfold’’ the spec
in the usual way by settingẼn5N̄(En); see, e.g., Ref.@38#.
N̄(E) is the smooth part of the integrated density of sta
N(E)5*d(E8)dE8 ~number of levels up to energyE). In
contrast to our semiclassical analysis in the preceding
tion, we have to take into consideration that our energy
gime is finite, therefore, we approximateN̄(E) by the gen-
eralized Weyl’s law including perimeter and corn
corrections@39#. We obtain for the rectangle with Dirichle
boundary conditions in Fig. 1~b!,
7-3
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JAN WIERSIG PHYSICAL REVIEW E 65 046217
N̄~E!5E2
l x12l y

4p
AE1

4

16
, ~11!

and for the rectangle with mixed boundary conditions in F
1~c!,

N̄~E!5E2
l x12l

4p
AE1

1

16
. ~12!

By construction, the unfolded spectra$Ẽn% have unit mean
level spacing. Henceforth, the tilde will be suppressed.

A. Nearest-neighbor spacing distributions

An important statistical quantity measuring short-ran
level correlations is the nearest-neighbor spacing distr
tion. It is defined as the probability density of the spacins
between adjacent levels

P~s!5 lim
n→`

1

n (
i 51

n

d~s2Ei 111Ei !. ~13!

We will compute its integral, the cumulative spacing dist
bution

I ~s!5E
0

s

P~s8!ds8. ~14!

For Poisson statisticsPP(s)5exp(2s) and I P(s)512exp
(2s), the GOE is well described by the Wigner surmi
PW(s)5(p/2)s exp(2ps2/4) and I W(s)512exp(2ps2/4),
and for the SP statistics@7,19#

PSP~s!54se22s, I SP~s!512~2s11!e22s. ~15!

PSP(s) shows a linear increase at smalls ~level repulsion!
like the Wigner surmise and an exponential fall off at largs
like Poisson statistics.

In Fig. 2 one sees that the cumulative spacing distribut
is in good agreement with the SP statistics in both ene
regimes~the medium-energy behavior of the non-Veech b

FIG. 2. Difference between the cumulative spacing distribut
of the pure barrier-billiard levels. Below, magnification.
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liard is not shown since it is similar to the Veech cas!.
However, small fluctuations around SP can be observe
the magnification.The fluctuations decrease with increas
energy, and they are larger than the statistical fluctuati
,0.5/AW'0.0035 due to thefinite width W520 000 of
the energy windows. For the Veech billiard, we find a slig
tendency towards the Wigner surmise for medium energ
and a slight tendency towards the Poisson distribution
high energies. The fluctuations in the non-Veech case ar
the same magnitude but without clear tendency towa
Wigner surmise or Poisson distribution.

The fluctuations for the Veech barrier billiard are ve
similar ~but by a factor 2.5 smaller in the high-energy r
gime! than those found in right triangles@22#. In Ref. @22#,
increasing fluctuations have been reported for very high
ergies above the 4 000 000th level. These fluctuations h
been interpreted as deviations from SP leading to the con
sion that SP is asymptotically not the relevant statistics
pseudointegrable systems. In the following paragraphs, h
ever, we will show that this interpretation is doubtful.

Let us construct an artifical SP distributed sequence
numbers. Take the levels of the simple rectangle in Fig. 1~b!
given by

Emn
0 5~2pm/ l x!

21~pn/ l y!2, ~16!

with m,n51,2,3, . . . . It hasbeen demonstrated numerical
that the nearest-neighbor spacing distribution and some o
statistical properties of such a sequence are asymptotic
extremely well described by the Poisson statistics@40#; see
also Ref.@41#. After ordering the levels according to increa
ing energy and removing every other level, the neare
neighbor spacing distribution of the sequence thus obtai
obeys SP statistics@19#. Figure 3 shows the correspondin
cumulative spacing distribution computed numerically fro
20 000 levels in three different regimes. The medium- a
high-energy regime are defined as before, whereas the
high energy regime starts at the 4 000 000th level as in R
@22#. We observe small fluctuations around SP which d
crease with increasing energy. In the medium- and hi
energy regime, the fluctuations are of the same order of m
nitude as for the pure barrier-billiard levels; cf. Fig. 2. W

n

FIG. 3. Difference between the cumulative spacing distribut
of the artificial SP sequence.
7-4



q

e
ua
. 3
m

le

a
in
pr
.
n

ct

e

l-

re
Eq
r
co
x
-

a

not
es
ribu-

-
r
SP
. A
ge
ext

rre-
e
e
the
d by

a

SPECTRAL PROPERTIES OF QUANTIZED BARRIER . . . PHYSICAL REVIEW E 65 046217
note that the same fluctuations are also present whenI (s)
2I P(s) is plotted for the Poisson sequence given by E
~16!.

The statistical fluctuations depend on the number of lev
under consideration. This carriers over to the total fluct
tions as illustrated for the very-high-energy regime in Fig
with 10 000 and 20 000 levels. Hence, one should not co
pare the statistics of sequences with different number of
els as it has been done in Ref.@22#.

Following the same reasoning as described above we h
also constructed a SP sequence of 20 000 numbers us
conventional pseudo random-number generator. This re
duces the expected statistical fluctuations of order 0.0035
summarize, from the fluctuations found numerically here a
in Refs. @21,22# it is not justified to exclude SP as corre
statistics for generic pseudointegrable systems.

We mention that the distribution of spacings betwe
neighboring eigenvalues of theS-matrix in an open version
of the barrier billiard@42# also resembles the SP result; a
though the agreement is not as good as here.

B. Next-to-nearest spacing distributions

In the preceding subsection we have seen that the nea
neighbor distributions are close to the SP prediction in
~15!. However, Eq.~15! is also valid for IP statistics. In orde
to distinguish between IP and SP statistics one has to
sider other correlation functions. First, we choose the ne
to-nearest spacing distribution~second-neighbor-spacing dis
tribution! and its integral. For the SP statistics@7#

PSP~2,s!5
8

3
s3e22s,

I SP~2,s!512
1

3
~4s316s216s13!e22s. ~17!

For IP we find analytically

PIP~2,s!54e2s@12~11s!e2s#,

I IP~2,s!511e2s@e2s~312s!24#. ~18!

Figure 4 shows that the cumulative next-to-nearest sp

FIG. 4. Difference between the cumulative next-to-nearest sp
ing distribution of the pure barrier-billiard levels.
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ing distribution is in agreement with the SP statistics but
with IP statistics. Note that the fluctuations are two tim
larger as in the case of the nearest-neighbor spacing dist
tion in Fig. 2.

We have also investigatednth-neighbor spacing distribu
tions P(n,s) with n53,4,5. Again, the distributions diffe
significantly from IP statistics and are well described by
statistics, even though the fluctuations increase slightly
detailed discussion is left out since we will study long-ran
level correlations in a more comprehensive way in the n
subsection.

C. Number variance

The number variance

S~L !5^~n~L,E!2L !2& ~19!

is the local variance of the numbern(L,E)5N(E1L/2)
2N(E2L/2) of energy levels in the interval@E2L/2,E
1L/2#. SP statistics gives@6,7,19#

(SP ~L !5
L

2
1

1

8
~12e24L!. ~20!

For IP statistics we get analytically a different result

( IP ~L !5L2
1

2
1S L1

1

2De22L. ~21!

Figure 5 reveals a substantial difference to SP for co
lation lengthsL.4 in the medium-energy regime. In th
high-energy regime the difference is smaller. Note that thL
regime in Fig. 5 is well below the crossover region where
number variance begins to saturate at a value determine
the shortest periodic orbit@34#. In the region of largeL, the
number variance is related to the form factor~see, e.g., Ref.
@23#! by means of

K~0!5 lim
L→`

S~L !

L
. ~22!

c-

FIG. 5. Number variance((L) of the pure barrier-billiard
levels.
7-5
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JAN WIERSIG PHYSICAL REVIEW E 65 046217
Using this relation we get for the Veech caseK(0)'0.27 at
medium energies and'0.34 at high energies ('0.36 for the
non-Veech case!. However, we do not interpret this result a
deviation from SP since we know from Sec. III that in th
Veech caseK(0) does converge to the SP result 1/2. Hen
we conclude that the convergence to a stationary limi
extremely slow. The slow convergence of the spectral sta
tics is shared by related systems such as right triangular
liards @21–23#, rectangular billiards with magnetic flux line
@23,43#, and parabolic maps with spin@44#. To overcome the
problem of slow convergence, we have tried to use an
trapolation procedure described in@23#. However, in our case
it does not give satisfactory results and therefore a deta
duscussion is omitted.

Figure 6 shows the number variance for the artificial
sequence constructed from the levels of the integrable r
angle. The convergence in direction towards SP is sim
even though a bit faster, as for the pure barrier-billiard lev
plotted in Fig. 5. In the regime of very high energies, t
number variance is hard to distinguish from the SP curve

D. The form factor

The form factorK~t! can be approximated numerically b
~see, e.g., Ref.@41#!

FIG. 6. Number variance((L) of the artificial SP sequence.

FIG. 7. The form factor~23! of the pure barrier-billiard levels
l 5 l y/2. The smooth curve is the fit~24! with a54.032.
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K~t;n!5
1

nU(j 5 l

l 1n

e2p iE jtU2

. ~23!

We consider here only the high-energy regime, i.e.l
5400 000 andn520 000. WesmoothK(t;n) by averag-
ing over small intervals of sizent50.006.Nevertheless,
the numerical data is quite irregular, as can be seen in Fi
for the Veech billiard~for the non-Veech case the pictur
looks very similar!. It is difficult to estimateK(0) directly
from such kind of data, but it is clear thatK(0) is well below
the SP predictition 1/2, which is consistent with our form
numerical results on the number variance.

A more elegant way to compare the form factor to S
statistics is described in Ref.@23#. Fit K(t;n) to the function

Kfit~t!5
a222a14p2t2

a214p2t2 . ~24!

Expression~24! is the SP form factor when a5 4. Therefore,
the quantityKfit(0)21/2 meausures the difference to SP s
tistics. Note thatKfit(0) in general deffers fromK(0;n),
since it depends also onK(t;n) with t.0. Fitting Eq.~24! to
our smoothed data over the range 0<t<3, we find remark-
able agreement with SP statistics:Kfit(0)50.504 for the
Veech billiard~see Fig. 7! and Kfit(0)50.498 for thenon-
Veech billiard.

E. Level dynamics

We here investigate the dependence of the energy le
on the system parameterl / l y . This so-called ‘‘level dynam-

FIG. 8. Pure barrier-billiard levels as functions of the barr
length 0.05l y< l<0.95l y .

FIG. 9. Sketch of the local level dynamics of the artificial S
sequence.
7-6
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ics’’ has been intensively studied for classically integra
and chaotic systems; see, e.g., Ref.@38#. To the author’s
knowledge, only one pseudointegrable~for all parameter val-
ues! example, the ‘‘square torus billiard’’@1# and a general-
ized version of it in Ref.@45#, has been studied in this regar

A typical situation for the pure barrier-billiard levels
displayed in Fig. 8. The global increase of the levels~not
unfolded! is due to the fact that the smooth part of the in
grated density of states in Eq.~12! decreases asl is in-
creased. Apart from this rather trivial fact we observe a nu
ber of interesting features:~i! the levels tend to avoid eac
other. Closer examination of the available numerical d
indicates that there are no level crossings. That means
fixed parameter value there are no degeneracies in the s
trum, which is consistent with the SP and the GOE predict
for the nearest-neighbor spacing distributionP(0)50 in
agreement with our former numerical results. The total
sence of level crossings is in contrast to the situation in
square torus billiard where crossings can appear for par
eter values at which the billiard is almost integrable@1#. ~ii !
Large areas free of levels exist similar as in integrable s
tems and different to fully chaotic systems. This is consist
with Poisson and SP statistics that both predict a slower
off of P(s) at larges than GOE statistics does.~iii ! There
exists an unusual structure of plateaus interrupted by s
segments not only near avoided crossings but also fairly
away from avoided crossings. Observation of the ene
eigenfunctions reveals that plateaus~steep segments! corre-
spond to parameter values at which the corresponding ei
function has small~large! amplitude at the upper end of th
barrier. Hence, varying the barrier length has no~strong! in-
fluence on the wave pattern and on the energy, resulting
plateau~steep segment!.

Interestingly, the abrupt changes in the slopes fairly
away from avoided crossings can be simulated in a nat
way by an artifical SP sequence constructed as descr
before by removing every other level of an integrable s
tem. Two neighboring levels of an integrable system ty
cally cross each other when a parameter is varied as sket
s
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in Fig. 9. Removing the second level~measured from below
for each value of the parameter! gives the solid, nondifferen-
tiable line. This could produce the kind of abrupt chang
seen in Fig. 8. Of course, the slope of finite-energy lev
cannot change discontinuously. Real discontinuities can o
be expected in the semiclassical limit.

V. CONCLUSION

In this paper we have studied the energy levels of pseu
integrable barrier billiards. Focusing on the pure barri
billiard states, we have found numerically that the neare
neighbor spacing distributions and next-to-nearest spa
distributions agree with the semi-Poisson~SP! statistics that
is obtained by dropping every other number from a rand
sequence. The number variance and the spectral form fa
agree with SP, even though the long-range correlations s
to converge rather slowly. Moreover, the level dynamics
consistent with SP statistics. Even though we have con
ered an high-energy window~20 000 levels starting at the
400 000th level! we cannot exclude that at larger energies
different scenario takes place. However, our analytical re
for the spectral form factor for a Veech barrier billiar
K(t)→1/2 ast→0, gives us some confidence that the sp
tral statistics of barrier billiards are indeed close to SP.

Due to the slow convergence of the spectral statistics
polygonal billiards, and other diffractive systems, semicl
sical methods as shown here and in Ref.@23# have to be
extended in the future to higher order int ~as in Ref.@46# for
rectangular billiards with pointlike singularities! and to other
polygons in order to clarify the role of the SP statistics
pseudointegrable systems.
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