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Spectral properties of quantized barrier billiards
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The properties of energy levels in a family of classically pseudointegrable systems, the barrier billiards, are
investigated. An extensive numerical study of nearest-neighbor spacing distributions, next-to-nearest spacing
distributions, number variances, spectral form factors, and the level dynamics is carried out. For a special
member of the billiard family, the form factor is calculated analytically for small arguments in the diagonal
approximation. All results together are consistent with the so-called semi-Poisson statistics.
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I. INTRODUCTION neighbor spacing distributions but other spectral quantities in
general differ.

Two decades after the first investigation of the quantum The SP conjecture has been verified numerically for right
mechanics of nonintegrable polygonal billiarfis], a re-  triangular[6,7] and rhombus billiard$20] where only small
newed interest in this peculiar class of dynamical system§ifferences to SP have been found. However, numerical
has shown up recently. One reason is the fabrication oWorks on right triangles in a regime of high level numbers
polygonal-shaped optical microcavitif8—5]. Another rea- S€em to indicate that the statistical properties are nonstation-
son is the finding6,7] that certain planar rational polygons &y [21,22 with increasing, but still small, deviations from
(all angles between sides are of the fopm/q, wherep, g _SP as the energy is mcrea_s[@d]. For certain right triangles,
are relatively prime integershave spectral properties very it has been shown analytically that the spectral form factor

similar to those of mesoscopic disordered systems at thfe0r small arguments is located around the corresponding SP

critical point of the metal-insulator transitig8] and to those result[23]. . . .
. . However, the triangles studied in RE23] are not generic
of systems with interacting electrofi].

: L2 . . rational polygons, because they belong to the class of Veech
The cIaSS|.ch dynamics n ratlongl polygons .havmg atpolygons[24], which may have special spectral properties.
least one critical corner withp>1 is characterized as |, this paper, we study the symmetric barrier billiaf@s—
pseudointegrablé¢l]. The phase space is foliated by two- 31] where the even-symmetry states, the “pure barrier-
dimensional invariant surfacés0,11, like in integrable sys-  pjjjiard states,” are expected to show the generic behavior.
tems[12], but the genus of the surfaces is larger than[diie  \we provide analytical and extensive numerical calculations
The flow on these surfaces is typically ergodic and not mix-showing that the spectral properties are fully consistent with

ing [13]. SP statistics. Moreover, our results throw some light on the
Pseudointegrable systems cannot be quantized accordim@nstationarity observed in Ref®1,27.
to the semiclassical Einstein-Brillouin-Keller rufé]. As a The paper is organized as follows. After defining the bil-

consequence, the statistical properties of energy levels dfard family in Sec. Il, we compute analytically the form
classically pseudointegrable systems are different from thoskctor for small arguments in Sec. Ill. Numerical results are
of integrable systems that are generically well described bypresented in Sec. IV. Section V contains a conclusion.
Poissonian random procesgéd]. For example, the nearest-

neighbor spacing distribution of pseudointegrable systems Il. BARRIER BILLIARDS

generically displays a clear level repulsidd as in the case

of the Gaussian orthogonal ensemif@OE) of random- The family of barrier billiards consists of rectangles with
matrix theory[15] that describes fully chaotic systems with sizesl,, |, and a barrier placed on the symmetry lire
time-reversal symmetrf16]. Significant deviations from =1,/2 as shown in Fig. (). The length of the barrief
GOE are observed first theoreticall§7] and later experi- (0J,) is the only nontrivial parameter. The free motion of a
mentally in microwave cavitiegl8]. point particle with massn and momentumg, ,py) bounded

Recently, the semi-PoissdSP statistics have been pro- by elastic reflections at the boundary of the billiard has a
posed as reference point for the spectral statistics of pseudeecond constant of motiok= pf( in addition to Hamilton’s
integrable systemfs,7]. Following Refs.[7,19], we define functionH. Hence, the dynamics in phase space is restricted
SP statistics by removing every other level from an orderedo invariant surfacesH,K)=const. The topology of these
Poisson sequencéx,}. Unfortunately, the term “semi- surfaces is not that of a torusith genus 1 but that of a
Poisson” was originally coined for a sequengg,} where two-handled spher@enus 2 due to the critical corner at the
Yn=(Xnt+Xn4+1)/2 [6]. We call this here interpolated-Poisson upper end of the barrier; see REf] for the relation between
(IP) statistics. IP and SP statistics have identical nearestritical corners and the genus of invariant surfaces in pseudo-

integrable billiards.
The billiards are Veectiroughly speaking, this property
*Electronic address: jwiersig@mpipks-dresden.mpg.de implies a special kind of hidden symmeltiyand only if I/1,
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@ - T [® © : Brackets(- - -) denote an energy averaging arouaen an
energy window much larger than the mean level spacing
1/d(E), and much smaller thaB. The Fourier transform of
T 1 R(e) is the spectral form factor
y
N » de —
Ji K(T) — f ?R( 6)92md er. (3)

We will concentrate on the limit—0; K(0)=1 for Poisson
[34], 1/2 for SP[23], and 0 for GOH34,15.

FIG. 1. (a) Trajectory(dotted in the full barrier billiard, a rec- For two-dimensional rational polygons, the smooth part of
tangle with a barrier between the pointx,¥)=(l,/2,0) and the density of states is semiclassically described by Weyl's
(1,/2]). Symmetry-reduced system wittb) Dirichlet boundary |aw E=A/(47r) whereA is the area of the polygon; the os-

conditions andc) mixed boundary conditions: Dirichi¢gNeumann  cillating part splits into two part§35,36]
on solid (dashedl lines.

= e = —LRr— 12—

dosc(E):dpo(E)+ddo(E)- (4)
is a rational numbef30]. Still, a typical symmetric barrier o ] o
billiard is not a generic pseudointegrable system since it id e periodic-orbit contribution
composed of two copies of an integrable sub-billiard, the

rectangle shown in Fig. (). This property is identical to _ ﬁ 1 o .
almost-integrability{32] in the case of/l, being rational. dp"(E)_% 4 V2mkl, explikly—ivpm/2—im/4)+c.c.
The energy eigenstates are solutions of the Helmholtz (5)

equation with Dirichlet boundary conditions, i.e., vanishing
amplitude, on the boundary of the polygon. The states arés a summation over classicgbrimitive and nonprimitive
odd or even with respect to the symmetry line. The formerperiodic orbits. These orbits are marginally stable and appear
ones are trivial eigenstates of the integrable sub-billiard irelways in one-parameter families reflecting the foliation of
Fig. 1(b). We, therefore, deal mainly with the even ones, thephase space by two-dimensional invariant surfapdabels
“pure barrier-billiard states,” which fulfill mixed boundary these familiesA, denotes the surface in configuration space
conditions on the boundary of the symmetry-reduced polycovered by a given familywithout repetitions of primitive
gon; see Fig. (t). We expect that the pure barrier-billiard periodic orbit3; I, is the (nonprimitive) length of periodic
states show the generic features of energy states in rationatbits; the Maslov indexv, is here twice the number of
polygons. reflections at Dirichlet boundarigdleumann boundaries do
not contributg; k=+/E is the wave number.

The diffractive orbit contributiordy(E) is a summation
over orbits starting and ending at critical corners of the poly-

We here compute analytically a spectral quantity, the two-gon. This summation is more involved than the periodic-
point correlation form factor, for the energy levéE,} of a  orbit contribution[37]. In the limit 7—— 0, however, the form
special member of the barrier-billiard family. Our calculation factor K(7) does not depend on diffractive orb[t83]. With
is inspired by that for the triangular billiards in R¢R3]. It  this insight a formula foK(0) has been derived in R¢R3]
turns out that the present calculation is much simpler. As irby inserting the periodic-orbit contributiofb) into Eg. (3)
Ref. [23], we will apply the modern semiclassical theory and employing the diagonal approximatidwhich is ex-
based on trace formulas that express the density of states opacted to be valid for smalt) yielding
guantum system in terms of periodic orbits of the underlying
classical systeni33]. For billiards, the semiclassical limit ) 1
fii—0 corresponds to the high-energy lingit—c. Through- K(0)=1lim 2—2

. -0 8m“d po

out the paper we use natural units such that2m=1.

The density of states can be written as sum of a smoot
part and an oscillatory part

Ill. THE SPECTRAL FORM FACTOR

A% —
| 9,6(lp—4mkdr), (6)
p

Q/heregp is the multiplicity of a given periodic-orbit family,
i.e., the number of families with exactly the same lengths,
and the summation is performed over families with different
lengths.

For later considerations it is helpful to repeat the evalua-
tion of Eq. (6) for the simplest case, the rectangular billiard,
as done in Ref[23]. A family of periodic orbits in a rect-
angle with sizesa, b (a and b are irrationally relatedand
areaA=ab can be specified by two non-negative integers
m, and n,, denoting the number of traversals across the
€ billiard in the x andy direction, respectively. The length of
d‘”‘( E 2) > @ each orbit is

d(E)=2, 8(E—E,)=d(E)+dusdE). (1)

The fluctuations in the oscillatory part can be studied with
the help of the two-point correlation function

R(e)=<dOSG(E+§
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lo= \/(Zmpa)2+(2npb)2. (7)  thefirst case, we have to add the two different valuesipf

and the two values ofm} leading to my and my odd

The number of periodic orbitd(1) up to lengthl is the  throughout the family. In the other case, we ga§=2my,
number of lattice points in the positivang,ny) quadrant  and my=2mj{, even since each orbit is symmetric with re-

inside the ellipse7) asymptotically given by spect to the folding axis. Clearly, for fixea, only one of
2 these two cases is possible. Hence, no cancellation occurs for
N(I)= i (8)  evenm, in the trace formuld5), in contrast to the complete
16A cancellation in the case of, odd. The simple consequence

- of which is that the number of periodic-orbit families that
Due to the fact that all families cover the same afga  contributes to the trace formuk®) is reduced by a factor
=2A and have typically the same multiplicity,=2 (time-  two. The same is true for the suf@). From Eq.(9) follows
reversal symmetiythe sum(6) can be replaced by the fol- then directly our main analytical result
lowing simple integral:

. 2A2 (=1 — dN(I) _1
K(0)=1|TOWTEJO|—5(|—477de)Td|, 9) K(0)=3. (10

which giveskK(0)=1 as expected for generic integrable sys-o calculated (0) is not only close to the SP prediction as

tems([34]. ) ) _in the case of Veech triangl¢23], it agrees exactly with the
We now extend the previous calculation to the barriergp prediction.

billiard. To keep the calculation elementary, we restrict our-  The calculation for general barrier length is considerably

self to the special Veech case-1,/2. The odd states are e complicated. Yet, it should be possible to compute

eigenstates in the rectangle with widé=1,/2, heightb k() also for rational/l,# 1/2 using methods developed in
=ly, and with Dirichlet boundary conditions, see Figb)l Refs.[23,30.

so we getK(0)=1 as demonstrated above. The even states,
the “pure barrier-billiard states,” fulfill mixed boundary con-
ditions as shown in Fig.(%). In the semiclassical trace for- IV. NUMERICAL RESULTS
mula (5), the inhomogeneous boundary conditions only in- ) o
fluence the Maslov indices of the periodic orbits: a reflection \We here present numerical results on several statistical
at a Dirichlet boundary increases the index by two in contrasfiuantities for general symmetric barrier billiards. As repre-
to a reflection at a Neumann boundary that does not changintatives we choose the Veech billiard wlithl /2 and one
the index. The resulting phase differencembetween tra- that is not Veech with =1,w, wherew=(/5—1)/2 is (the
jectories has an analog in billiards with a magnetic flux linereciprocal of the golden mean. Irrationally related param-
[23] where trajectories encircling a flux of 1f2&n natural etersl, = 7/87/3 andly=3\/§/w are taken. Billiards with
units) once pickup a phase. I~0 andl~I, are not investigated since the semiclassical
First, let us consider periodic orbits with fixed,,n, behavior of these limiting cases is expected to set in at ex-
=0 andm, odd. We writem,=my+mp where my,mp tremely high energies. We consider two different energy re-
=0 count the number of reflectionsat ,/2 with Neumann ~ gimes: (i) the medium-energy regime starting with the
or Dirichlet boundary condition, respectively. Two cases40000th level and ending with the 60000th level, diig
have to be distinguishedny even andnp, odd; my odd and the high-energy regime starting with the 400 000th level and
mp even. The corresponding two types of orbits are relate@nding with the 420 000th level. Our high-energy regime is
by a symmetry transformatioignoring the boundary condi- below that of Ref[22] and above that of Ref21]. .
tions, the reflection at the ling=1,/2. Hence, both types ~ We compute the eigenvalues with the mode-matching
have the samk,, g,, andA, . However, the Maslov indices technque that.ls., very efficient for barrier billiards as de-
are different due to the inhomogeneous boundary conditiongicribed in detail in Ref[28]. An accuracy of about 10 of
v,mod4=0 and v, mod4=2, respectively. This implies the mean level spacing is achieved.

that the contribution of both families to the trace form(Ba To distinguish between local fluctuations in the level se-
are identical differing just by a sign. Therefore, both contri-quenceE;<E,<Es=< ... and a systematic global energy
butions cancel each other. dependence of the average density we “unfold” the spectra

Second, let us turn to periodic orbits with, even. We in the usual way by setting,=N(E,); see, e.g., Ref.38].
begin with unfolding the orbits into a larger rectangle with N(E) is the smooth part of the integrated density of states
width a’ =2a. Assume, for simplicity, thatn"jzmplz isodd. N(E)=/d(E')dE’ (number of levels up to energ§). In
The caseam, even can be treated by further unfolding of the contrast to our semiclassical analysis in the preceding sec-
orbits. Again, form),=my+mp odd there exist two kinds of tion, we have to take into consideration that our energy re-
periodic orbits related by symmetry: one with{; even and  gime is finite, therefore, we approximal§E) by the gen-
mp odd and one wittmy, odd andmy, even. These two kinds eralized Weyl's law including perimeter and corner
of trajectories either become congruent or remain separatezbrrections[39]. We obtain for the rectangle with Dirichlet
when folded back into the original rectangle with widthin boundary conditions in Fig. (),
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Kal — 1,/2, medium energies i

! \ ---- 12, high energies [

0.1 |/ N e l,®, high energies 1 0.005 n“.
H \ —-— Poisson ’ h

' — —- Wigner surmise K

I(s)-1..(s)

—— medium energies

-0.005 | ---- high energies
~~~~~~~~ very high energies, 20000 levels
—-— very high energies, 10000 levels
-0.01 - . L
0 1 2 4 3 4
: . FIG. 3. Difference between the cumulative spacing distribution
1 2 4 3 4 "
of the artificial SP sequence.

FIG. 2. Difference between the cumulative spacing distribution ) . o
of the pure barrier-billiard levels. Below, magnification. liard is not shown since it is similar to the Veech case

However, small fluctuations around SP can be observed in
_ L+ 21, 4 the magnification.The fluctuations decrease with increasing
N(E)=E— = JVE+ 16’ (1)  energy, and they are larger than the statistical fluctuations

<0.5/\/W~0.0035 due to thdinite width W=20000 of

and for the rectangle with mixed boundary conditions in Fig.the energy windows. For the Veech billiard, we find a slight

1(c), tendency towards the Wigner surmise for medium energies
and a slight tendency towards the Poisson distribution for
— [ +2l 1 high energies. The fluctuations in the non-Veech case are of
N(E)=E- A ‘/—’LE- 12 the same magnitude but without clear tendency towards
Wigner surmise or Poisson distribution.
By construction, the unfolded spect{&,} have unit mean  The fluctuations for the Veech barrier billiard are very
level spacing. Henceforth, the tilde will be suppressed.  Similar (but by a factor 2.5 smaller in the high-energy re-

gime) than those found in right triangld22]. In Ref.[22],
increasing fluctuations have been reported for very high en-
ergies above the 4000 000th level. These fluctuations have
An important statistical quantity measuring short-rangepeen interpreted as deviations from SP leading to the conclu-
level correlations is the nearest-neighbor spacing distribusjon that SP is asymptotically not the relevant statistics for
tion. It is defined as the probability density of the spacng pseudointegrable systems. In the following paragraphs, how-

A. Nearest-neighbor spacing distributions

between adjacent levels ever, we will show that this interpretation is doubtful.
L0 Let us construct an artifical SP distributed sequence of
P(s)= lim - E S(s—E; 1+E)). (13) n_umbers. Take the levels of the simple rectangle in Hig) 1

noow Ni=1 given by
We will compute its integral, the cumulative spacing distri- E%n=(2wmllx)2+(wnlly)2, (16)
bution

s withm,n=1,2,3 ... . It hasbeen demonstrated numerically
I(s)= fo P(s")ds’. (14 that the nearest-neighbor spacing distribution and some other

statistical properties of such a sequence are asymptotically

For Poisson statistic®p(s)=exp(—s) and I (s)=1—exp extremely well described by the Poisson statisfi#8]; see
(—9), the GOE is well described by the Wigner surmisealso Ref[41]. After ordering the levels according to increas-

p — (/2 24 | —1— 2/ ing energy and removing every other level, the nearest-
ar\q\ésfzr t(th S);es)'iggisg;;/ 1)9]and w(s) exp(—msi4), neighbor spacing distribution of the sequence thus obtained

obeys SP statisticgl9]. Figure 3 shows the corresponding
Pss)=4se %5, Igds)=1—(2s+1)e 5. (15 cumulative spacing distribution computed numerically from
20000 levels in three different regimes. The medium- and
P<sH(s) shows a linear increase at smalllevel repulsion  high-energy regime are defined as before, whereas the very
like the Wigner surmise and an exponential fall off at lasge high energy regime starts at the 4 000 000th level as in Ref.
like Poisson statistics. [22]. We observe small fluctuations around SP which de-
In Fig. 2 one sees that the cumulative spacing distributiorcrease with increasing energy. In the medium- and high-
is in good agreement with the SP statistics in both energgnergy regime, the fluctuations are of the same order of mag-
regimes(the medium-energy behavior of the non-Veech bil-nitude as for the pure barrier-billiard levels; cf. Fig. 2. We
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. 15 ; >
0.06 | / N —— 1/2, medium energies 1 / e
/ \ --=-=- 12, high energies / e
/ \\ ~~~~~~~ ., high energies / -
w ; ——- interpolated—Poisson g e
& 004 \ / .
i 10 | / e
T /'/ g
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o = 7
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/ a
5t 4 o <— | /2, medium energies
g ----1/2, high energies
------------ Lo, r_ugh energies
—— - semi-Poisson
—-— interpolated—Poisson

_ _ 0 10 L 20 30
FIG. 4. Difference between the cumulative next-to-nearest spac-
ing distribution of the pure barrier-billiard levels. FIG. 5. Number variances(L) of the pure barrier-billiard
levels.
note that the same fluctuations are also present whgn
—Ip(s) is plotted for the Poisson sequence given by Eqjng distribution is in agreement with the SP statistics but not
(16). o . with IP statistics. Note that the fluctuations are two times
The statistical fluctuations depend on the number of levelgarger as in the case of the nearest-neighbor spacing distribu-
under consideration. This carriers over to the total fluctuatign in Fig. 2.

tions as illustrated for the very-high-energy regime in Fig. 3 e have also investigatatth-neighbor spacing distribu-
with 10 000 and 20 000 levels. Hence, one should not comyjgns P(n,s) with n=3,4,5. Again, the distributions differ
pare the statistics of sequences with different number of levsjgnificantly from IP statistics and are well described by SP
els as it has been done in RE22]. _ statistics, even though the fluctuations increase slightly. A
Following the same reasoning as described above we havgstailed discussion is left out since we will study long-range

also constructed a SP sequence of 20000 numbers usingige| correlations in a more comprehensive way in the next
conventional pseudo random-number generator. This repres,psection.

duces the expected statistical fluctuations of order 0.0035. To
summarize, from the fluctuations found numerically here and

in Refs.[21,22 it is not justified to exclude SP as correct C. Number variance

statistics for generic pseudointegrable systems. The number variance
We mention that the distribution of spacings between )
neighboring eigenvalues of tf@matrix in an open version (L)=((n(L,E)=L)%) 19
of the barrier billiard[42] also resembles the SP result; al- )
though the agreement is not as good as here. is the local variance of the number(L,E)=N(E+L/2)

—N(E—L/2) of energy levels in the intervdlE—L/2,E

B. Next-to-nearest spacing distributions +L/2]. SP statistics givefs,7,19

In the preceding subsection we have seen that the nearest- L 1
neighbor distributions are close to the SP prediction in Eq. ESP(L)=§+ g(l—e*"’L). (20)
(15). However, Eq(15) is also valid for IP statistics. In order
to distinguish between IP and SP statistics one has to con:
sider other correlation functions. First, we choose the next-
to-nearest spacing distributigeecond-neighbor-spacing dis- 1
tribution) and its integral. For the SP statisticg SeL)=L— >+

or IP statistics we get analytically a different result

1
L+ =]e 2. (21)

2

8
— _3a—2s
PsH(28)= 3S e Figure 5 reveals a substantial difference to SP for corre-

lation lengthsL>4 in the medium-energy regime. In the

1 5 ) s high-energy regime the difference is smaller. Note thatL.the
lsH(25)=1-5(4s°+65"+6s+3)e ™ (17 regime in Fig. 5 is well below the crossover region where the
number variance begins to saturate at a value determined by
For IP we find analytically the shortest periodic orbiB4]. In the region of largd., the
number variance is related to the form facteee, e.g., Ref.
Pp(25)=4e [1—-(1+s)e "], [23]) by means of
Ip(25)=1+e e 3(3+2s)—4]. (18 S(L)
K(0)= lim —. (22
Figure 4 shows that the cumulative next-to-nearest spac- Lo L
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FIG. 8. Pure barrier-billiard levels as functions of the barrier
FIG. 6. Number varianc& (L) of the artificial SP sequence. length 0.05,<I<0.93, .

2
Using this relation we get for the Veech cas€0)~0.27 at

medium energies ane 0.34 at high energies<0.36 for the
non-Veech cage However, we do not interpret this result as
deviation from SP since we know from Sec. IlI that in the We consider here only the high-energy regime, ilk.,
Veech cas& (0) does converge to the SP result 1/2. Hence, =400 000 andn=20 000. WesmoothK(7;n) by averag-
we conclude that the convergence to a stationary limit igng over small intervals of sizéh7=0.006.Nevertheless,
extremely slow. The slow convergence of the spectral statishe numerical data is quite irregular, as can be seen in Fig. 7
tics is shared by related systems such as right triangular bifor the Veech billiard(for the non-Veech case the picture
liards[21—23, rectangular billiards with magnetic flux lines 100ks very similay. It is difficult to estimateK(0) directly
[23,43, and parabolic maps with spfd4]. To overcome the from such kind of data, but it is clear thig{ 0) is well below
problem of slow convergence, we have tried to use an exthe SP predictition 1/2, which is consistent with our former
trapolation procedure described[28]. However, in our case numerical results on the number variance.
it does not give satisfactory results and therefore a detailed A more elegant way to compare the form factor to SP
duscussion is omitted. statistics is described in R¢23]. Fit K(7;n) to the function
Figure 6 shows the number variance for the artificial SP 5 » >
sequence constructed from the levels of the integrable rect- Kl 7 _a —2atdamT _
angle. The convergence in direction towards SP is similar, fit a‘+4mir?
even though a bit faster, as for the pure barrier-billiard levels
plotted in Fig. 5. In the regime of very high energies, theExpression(24) is the SP form factor whena 4. Therefore,

number variance is hard to distinguish from the SP curve. the quantityKg(0)—1/2 meausures the difference to SP sta-
tistics. Note thatK;(0) in general deffers fronkK(0;n),

since it depends also df( 7;n) with 7>0. Fitting Eq.(24) to
D. The form factor our smoothed data over the range <3, we find remark-

able agreement with SP statistids;;(0)=0.504 for the

The form factorK(7) can be approximated numerically by Veech billiard(see Fig. 7 andK;;(0)=0.498 for thenon-

(23)

I+n
2 e27TiEjT
=1

1
K(T;n)=ﬁ

(24)

(see, e.g., Ref41]) Veech billiard.
E. Level dynamics
127 We here investigate the dependence of the energy levels
T 4 AL U il | on the system parametbfl, . This so-called “level dynam-
N v 1]
HIL R WAL 0
co8} il
z W)D ) E
p
06 | [
i
0.4
02 0 1 T 2 3 parameter
FIG. 7. The form facto23) of the pure barrier-billiard levels; FIG. 9. Sketch of the local level dynamics of the artificial SP
I=1,/2. The smooth curve is the fi24) with a=4.032. sequence.
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ics” has been intensively studied for classically integrablein Fig. 9. Removing the second levegheasured from below

and chaotic systems; see, e.g., R&8]. To the author’'s for each value of the parameleives the solid, nondifferen-

knowledge, only one pseudointegralfler all parameter val- tiable line. This could produce the kind of abrupt changes

ueg example, the “square torus billiard’l] and a general- seen in Fig. 8. Of course, the slope of finite-energy levels

ized version of it in Ref[45], has been studied in this regard. cannot change discontinuously. Real discontinuities can only
A typical situation for the pure barrier-billiard levels is be expected in the semiclassical limit.

displayed in Fig. 8. The global increase of the leveist

unfolded is due to the fact that the smooth part of the inte- V. CONCLUSION

grated density of states in Eql2) decreases ab is in- In thi h died th levels of q

creased. Apart from this rather trivial fact we observe a num- n this paper we have studied t € energy 1evels ot pseudo-

ber of interesting featuresi) the levels tend to avoid each integrable barrier billiards. Focusing on the pure barrier-

other. Closer examination of the available numerical datapi”.iard states, we hgve_ fognd numerically that the nearest-
indicates that there are no level crossings. That means f eighbor spacing distributions and next-to-nearest spacing

fixed parameter value there are no degeneracies in the spe stributions agree with the semi-Poiss@P) statistics that

trum, which is consistent with the SP and the GOE predictioHs obtained by dropping every other number from a random
for the nearest-neighbor spacing distributi®§0)=0 in sequence. The number variance and the spectral form factor

agreement with our former numerical results. The total apdgree with SP, even though the long-range correlations seem

sence of level crossings is in contrast to the situation in th(I,‘0 converge rather slowly. Moreover, the level dynamics is

square torus billiard where crossings can appear for pararr?-onS'Stent with SP statistics. Even though we have consid-

: - - - o ered an high-energy windoW20 000 levels starting at the
eter values at which the billiard is almost integrakig: (ii) 400 000th Igevel Wegg/annot e\izclude that at larger egnergies a

Large areas free of levels exist similar as in integrable sys—if_f rent nario tak | However. our analvtical result
tems and different to fully chaotic systems. This is consistenE erent scenario takes place. However, our analytical resu

with Poisson and SP statistics that both predict a slower falo" the speciral f°”‘."' factor for a Ve;_ech barrr:er rt}nlhard,
off of P(s) at larges than GOE statistics doeSii) There (lT)_).llz. aSTf_’O’ glveS.”l:IS some con |denc|et at the spec-
exists an unusual structure of plateaus interrupted by stee pl statistics of barrier billiards are indeed close to SP .
segments not only near avoided crossings but also fairly far Due to the_ slow convergence of the spectral statistics in
away from avoided crossings. Observation of the energ olygonal billiards, and other diffractive systems, semiclas-

: . ical methods as shown here and in R3] have to be
eigenfunctions reveals that plateaiséeep segmentgorre- . . . .
spond to parameter values at which the corresponding eigeﬁ-xtenOled n the_ future_to h|g_he_r ord_emr(as_m Ref[46] for
function has smalilarge amplitude at the upper end of the rectangular billiards with pomtllke singularitieand to cher _
barrier. Hence, varying the barrier length has(stwong in- polygons in order to clarify the role of the SP statistics in

fluence on the wave pattern and on the energy, resulting in %seudomtegrable systems.
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